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Abstract 
The signed area bounded by a parametric curve with respect to a slanted line and the signed 

volume bounded by a smooth parametric surface, a plane and the perpendicular projection from the 

surface to the plane were discussed in [1]. In this note, in addition to the integration method 

described in [1], we introduce a transformation method to further discuss how to find the volume of 

the solid bounded by an orientable smooth surface, especially for a real closed quadric surface and a 

plane. We present Maple procedures based on integration and transformation methods used to 

evaluate signed areas and volumes. The procedures are designed with formal parameters which can 

be easily used or modified by instructors and students. 
 

1. Introduction 

The geometric significance of a Riemann integral ( )
b

a
f x dx  is the net area of the region bounded 

by the curve ( )y f x= , two vertical lines x a= and x b= , and the x -axis. The ways of finding the 

area bounded by a parametric curve 
1 2[ ( ),  ( )] ( )x t y t t t t  , a slanted line y mx b= + , and the     

perpendiculars to the line from 1 1( ( ), ( ))x t y t to
2 2( ( ), ( ))x t y t  in two dimensions were discussed in [1]. 

Since the graph of a function ( )y f x= was replaced by a parametric curve, the sign of the bounded 

area depends on the direction of the given parametric curve. The formula computing signed areas 

was derived by a proper coordinate transformation (see [1]). In the 3-dimensional space 3R , when 

considering the volume bounded by a smooth parametric surface ( , ) [ ( , ), ( , ),s t x s t y s t=w ( , )]z s t , 

1 2 1 2,  s s s t t t    , with respect to a general plane, similar formulae computing the signed 

volumes were obtained in [1]. In this paper, Maple procedures based on these formulae are 

presented and their performance is demonstrated with illustrative examples. In section 3, we 

describe how we find the volume of the solid bounded by an orientable smooth surface (especially 

for a real closed quadric surface) and a plane with integral method and transformation method, and 
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we use some examples to demonstrate when these two different methods will result in the same 

answers, and to show their respective characteristics.  

 

2. Signed Areas 

 
We first recall the following theorems from [1]: 

 

Theorem 2.1 ([1]) Let C be the smooth curve ( ) [ ( ), ( )]t x t y t=w , where 1 2t t t  . Let R be the region 

bounded by C, the line y mx b= + , and the perpendiculars to the line from 1 1( ( ), ( ))x t y t and 

2 2( ( ), ( ))x t y t . Then the net signed area of R is given by 

2

1
2

1
( ( ) ( ) )( ( ) ( ) ) .

1

t

t
x t m y t b x t y t m dt

m
 − + − +

+                   (1) 

Throughout this paper, the word “area” represents a net signed area and similar terminology is 

used in the 3-dimensional space. 

 

Corollary 2.2 ([1]) Let C be a closed smooth curve traveling only in one direction, then (1) 

produces the area bounded by the closed curve which is independent of the location of the line. 

 

Here is the Maple procedure: 

 

>sarea:=proc(fun, m, b, t1, t2) 

local graph, funt, ss, x1, y1, x2, y2; 

# please use “t” as parameters in fun; 

x1:=eval(fun[1], t=t1);  

y1:=eval(fun[2], t=t1);  

x2:=eval(fun[1], t=t2);  

y2:=eval(fun[2], t=t2); 

graph:=plot([[fun[1], fun[2], t=t1..t2], m*t+b, -1/m*(t-x1)+y1, -1/m*(t-x2)+y2], linestyle=[1, 2, 3, 

4], scaling=constrained); 

print(graph); 

funt:=(-fun[1]*m+fun[2]-b)*(diff(fun[1], t)+diff(fun[2], t)*m); 

ss:=int(funt, t=t1..t2);  

ss:=ss/(1+m*m); 

end: 

 

We implement the Maple procedure above to the following Examples 2.3 and 2.4. 

 

Example 2.3 Let C be the curve of [8sin(3 )cos( ),8sin(3 )sin( )]t t t t , where 0,
2

t  
 

，the line L 

be 9y x= − − . Find the area bounded by C with respect to the line L. 

 

Solution: Set up the expression for C，then run the procedure “sarea”，we get the following result. 
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>fun:=[8*sin(3*t)*cos(t), 8*sin(3*t)*sin(t)]: 

>S:=sarea(fun, -1, -9, 0, Pi/2); 
: 8 20S = − +  

 

                           
Figure 1. Area bounded by C with respect to L (green line)   

 

We note that both yellow and blue lines in Figure 1 are perpendicular to the green line segment. We 

remark that the answer 8 20− + is the net signed area, it is not the actual area of the region. The 

region consists of two portions: S1 is the loop going from origin back to itself in a counterclockwise 

direction and the other S2 is enclosed by an arc and three segments in a clockwise direction. We 

demonstrate the areas of S1 and S2 respectively below. 

 

>S1:=sarea(fun, -1, -9, 0, Pi/3); 

16
1:

3
S = −  

We note that even if there is a straight line (yellow line) cuts through S1 but S1 is a closed curve 

traveling only in one direction, it follows from Corollary 2.2 that calculation of the area of S1 is not 

affected even if the perpendiculars intersect the curve C. The area of S2 is shown below: 

 

>S2:=sarea(fun, -1, -9, Pi/3, Pi/2); 

                               
8

2 : 20
3

S = − +  

The true real area bounded by C respect to L is 1 2

8
20.

3
S S + = +  

 

Example 2.4  Let C be the curve [9sin(3 )cos( ),7sin(3 )sin( )]t t t t , where ,
3 2

t   
 

，the line L 

be 5y x= − − . Find the area bounded by C with respect to the line L (see Figure 2).   

 

Solution: Set up the expression for C，then run the procedure “sarea”, we obtain the following 

result. 
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>fun1:=[9*sin(3*t)*cos(t), 7*sin(3*t)*sin(t)]; 

>sarea(fun1, -1, -5, Pi/3, Pi/2); 

                                   
21 21

4 8
−  

Note that the answer
21 21

4 8
− is the net signed area, it is not the real area of the region. By Figure 2, 

we know that the line L and the curve C have one intersection point P, the two regions (S1 and S2) 

are located on the opposite sides of the line L, the signed areas of the regions have different signs. 

Hence, to get the real area of the region we carry out the following calculations. Firstly, we find the 

t-value corresponding to the intersection point P. Solving the follow equation: evalf(solve ('7*   

sin(3*t)*sin(t)= -9*sin(3*t)*cos(t)-5', t), 15), we obtain t0= 1.22964231411985. Then we use the 

procedure on 
0,

3
t 

 
 and 

0 ,
2

t  
 

 respectively, we obtain S1=1.791900156, S2=-4.788580872. 

Therefore the real area is |S1|+|S2|= 6.580481028. 

 

>S1:=sarea(fun1, -1, -5, Pi/3, 1.22964231411985); 

                               S1:= 1.791900156  

>S2:=sarea(fun1, -1, -5, 1.22964231411985, Pi/2); 

                               S2:= -4.788580872  

 

 
Figure 2. Area bounded by C with respect to L 

 

We verify here that the signed areas for S1 and S2 are consistent with the Green’s Theorem students 

encountered in a multi-variable calculus class. Let C1 be the path traversed counterclockwise from 

OM  to MP  to PO  and C2 be the path traversed clockwise from PN  to NQ  to QP . Using 

Green's Theorem on the curve C1, we obtained 1.791900155997022 for the area of the first region S1. 

Using Green's Theorem on the curve C2, we obtained -4.788580871670222 for the area of the 

second region S2. 

 

1
1

1
( ( ) ( ) ( ) ( ))

2 C
S x t y t y t x t dt = − = 1.791900155997022. 

2
2

1
( ( ) ( ) ( ) ( ))

2 C
S x t y t y t x t dt = −              

= -4.788580871670222. 
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3. Signed Volumes 

 
We recall the following theorem from [1] when dealing with a volume with respected to a slanted 

plane: 

 

Theorem 3.1. Let S be the smooth parametric surface ( , ) [ ( , ), ( , ), ( , )]s t x s t y s t z s t=w , 1 2 ,s s s   

1 2t t t  . Let R be the region bounded by S, the plane P: ,ax by cz d+ + = and the perpendicular 

projection from the surface to the plane P. Then the net signed volume of R is given by 

             
2 2

1 1

( , ) ( , ) ,
s t

s t

p p

s t
r s t dpdq r s t dtds

q q

s t

  
  

=  
  

 
  

                          (2) 

where  
1

1 2 1 2

( , ) ( , )

( , ) , , ( , )

( , )
( , )

p s t x s t

q s t p p p p y s t

r s t d
z s t

c

−

 
  
  

=    
   
  − 

 

, and 
1 2,p p  are two orthonormal vectors on the 

plane P. 

 

Corollary 3.2 ([1]). If the smooth surface ( , )s tw  is an orientable closed surface, the equation (2) 

produces the volume of the region bounded by the closed surface, and this volume is independent of 

the location of the plane P. 

 

Here is the Maple procedure for Theorem 3.1: 

 

>svolume:=proc(fun, PL, ST) 

local a1, b1, c1, d1, p1, p2, p3, n1, n2, n3, dotp, mat, wt, jac, tjac, ss, fvec, pars; 

# please use “s, t” (or other variables but in alphabet) as parameters in fun; 

# PL=[a, b, c, d] be the coefficients of the plane “ax+by+cz=d”; 

# ST=[s1, s2, t1, t2] be bounds of the integrals; 

a1:=PL[1]; b1:=PL[2]; c1:=PL[3]; d1:=PL[4];  

if c1=0 then  

error (“the case can not be dealt with”); 

end if; 

if d1<>0 and a1<>0 and b1<>0 then 

p1:=[0, 0, d1/c1]; p2:=[d1/a1, 0, 0]; p3:=[0, d1/b1,0]; 

elif d1<>0 and a1=0 and b1<>0 then 

p1:=[0, 0, d1/c1]; p2:=[0, d1/b1, 0]; p3:=[1, 0, d1/c1]; 

elif d1<>0 and a1<>0 and b1=0 then 

p1:=[0, 0, d1/c1]; p2:=[d1/a1, 0, 0]; p3:=[0, 1, d1/c1]; 

elif d1<>0 and a1=0 and b1=0 then 

p1:=[0, 0, d1/c1]; p2:=[0, 1, d1/c1]; p3:=[1, 0, d1/c1]; 
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elif d1=0 and a1<>0 and b1<>0 then 

p1:=[0, 0, 0]; p2:=[1, 0, -a1/c1]; p3:=[0, 1, -b1/c1]; 

elif d1=0 and a1=0 and b1<>0 then 

p1:=[0, 0, 0]; p2:=[1, 1, -b1/c1]; p3:=[2, 1, -b1/c1]; 

elif d1=0 and a1<>0 and b1=0 then 

p1:=[0, 0, 0]; p2:=[1, 1, -a1/c1]; p3:=[1, 2, -a1/c1]; 

elif d1=0 and a1=0 and b1=0 then 

p1:=[0, 0, 0]; p2:=[1, 0, 0]; p3:=[0, 1, 0]; 

end if; 

n1:=vector(p2-p1); n2:=vector(p3-p1); 

dotp:=linalg[dotprod](n1, n2); 

if dotp<>0 then 

n1:=evalm(n1-dotp*n2/(linalg[norm](n2, 2))^2) ; 

end if; 

n1:=evalm(n1/linalg[norm](n1, 2)); n2:=evalm(n2/linalg[norm](n2, 2)); 

n3:=linalg[crossprod](n1, n2); 

mat:=matrix(3, 3, [n1, n2, n3]);   # mat is an orthogonal matrix; 

mat:=linalg[transpose](mat); mat:=linalg[inverse](mat); 

fvec:=vector( [fun[1], fun[2], fun[3]-d1/c1]); wt:=linalg[multiply](mat, fvec); 

jac:=MTM[jacobian]([wt[1], wt[2]], [s, t]); tjac:=linalg[det](jac); 

ss:=int(int(wt[3]*tjac, t=ST[3]..ST[4]), s=ST[1]..ST[2]); 

end: 

 

We implement the above 3D Maple procedure to show in next Example 3.3 that the volume of 

the closed ellipsoid is independent of the location of the plane P (see Corollary 3.2).  

 

Example 3.3 Let S be the ellipsoid

( , ) 1 5sin cos

( , ) 2 3sin sin

( , ) 3 8cos

x s t t s

y s t t s

z s t t

− +   
   

= +
   
   − +   

, where [0,2 ]s  , and [0, ]t  ,  

and let P and P1 be the planes3 2 5 30x y z− + = and 3 2 3 5x y z+ − = − respectively. Find the volume 

of the region R bounded by S, the plane and the perpendicular projection from the surface to the 

plane P. Repeat the same process to find the volume of the region R if we replace P by P1. 

 

Solution: We first set up the expression for ellipsoid S, draw the figures of S and the plane P, which 

does not intersect S (see Figure 3). We then run the Maple procedure “svolume”, to obtain the 

signed volume of S to be -160π. We demonstrate that the volume of the closed ellipsoid is 

independent of the location of the plane P (from Corollary 3.2). We use plane P1 (see Figure 4), 

which intersects S, to demonstrate this effect. 

 

>fun:=[-1+5*sin(t)*cos(s), 2+3*(sin(t)*sin(s)), -3+8*cos(t)]: 

>graph1:= plot3d(fun, s = 0 .. 2*Pi, t = 0 .. Pi, axes = boxed): 

>graph2:= implicitplot3d(3*x-2*y+5*z = 30, x=-8 ..8, y =-8.. 8, z =-8 ..8): 

>display({graph1, graph2}); 

>V1:=svolume(fun, [3, -2, 5, 30], [0, 2*Pi, 0, Pi]);  
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                                1: 160V = −  

>graph3:=implicitplot3d(3*x+2*y-3*z =-5, x=-8..8, y=-8..8, z =-8..8); 

>display({graph1, graph3}); 

>V2:=svolume(fun, [3, 2, -3, -5], [0, 2*Pi, 0, Pi]);   
                                2 : 160V = −  
 

            
Figure 3. Volume of S with respect to P          Figure 4. Volume of S with respect to P1 

 

In the next example, we use Maple procedure “svolume” to find the volume of the region bounded 

by an open surface and a plane, and the perpendicular projection from the surface to the plane. 

 

Example 3.4 Let S be the ellipsoid                     

 

( , ) cos(4)sin cos 3sin(4)cos

( , ) sin(2)sin(4)sin cos 2cos(2)sin sin 3sin(2)cos(4)cos

( , ) cos(2)sin(4)sin cos 2sin(2)sin sin 3cos(2)cos(4)cos

x s t t s t

y s t t s t s t

z s t t s t s t

−   
   

= + +
   
   − +   

, 

where [ ,2 ]s   , and [0, ]
2

t  , and P be the plane 3x y z+ + = − . Find the volume of the region 

bounded by S, the plane P, and the perpendicular projection from the surface S to the plane P. 

 

Solution: We set up the expression for S, and plot the figure of S and P. Then we run the procedure 

“svolume”, and get the real volume is -15.55764889.  

 

>fun2:=[cos(4)*sin(t)*cos(s)-3*sin(4)*cos(t), sin(2)*sin(4)*sin(t)*cos(s)+ 2*cos(2)*sin(t)*sin(s)+ 

3*sin(2)*cos(4)*cos(t), cos(2)*sin(4)*sin(t)*cos(s)-2*sin(2)*sin(t)*sin(s)+3*cos(2)*cos(4)*cos(t)]: 

>graph4:=plot3d(fun2, s = Pi.. 2*Pi, t= 0..Pi/2, axes=boxed): 

>graph5:= implicitplot3d(x+y+z=-3, x =-3..3, y=-3..3, z =-5..5): 

>display(graph4, graph5); 

>V1:=svolume(fun2, [1, 1, 1, -3], [ Pi, 2*Pi, 0, Pi/2]); 

>evalf(V1);                               

       -15.55764889 



The Electronic Journal of Mathematics and Technology, Volume 6, Number 2, ISSN 1933-2823 
 

182 

 

                                 
                Figure 5. Volume of a surface S with respect to the plane P     

            

Remark: In Theorem 3.1, if S and P have no intersection (i.e. S is located in one side of P), 

then the real volume of the region R can be easily calculated by (2), it is absolute value of the 

number obtained by (2). But for a general case, it is difficult to find the real volume of the region R, 

unless the surface S is a closed surface (see Example 3.3).  

 

3.1. Integral Method  

 
We now turn our attention to find part of the volume for a smooth orientable surface when a plane 

cuts through the given surface. In particular, suppose that a plane P cuts the solid bounded by the 

surface S of the form ( , , ) 0F x y z = into only two pieces. In this section, we discuss the following 

Theorem of finding the volumes of these two respective pieces bounded by P and S mentioned in 

[1]. 

 

Theorem 3.5 [1]. Let S be the smooth parametric surface of the form ( , , ) 0F x y z = . Let R be the 

region bounded by S and the plane P: .ax by cz d+ + = Furthermore, we assume the following 

conditions are met:  

(i) If 

0

( , , ) 0 0

/

p

G p q w F A q

w d c

    
    

= + =    
        

, where  1 2, ,A p p n= and
1 2,p p  are two 

perpendicular unit vectors on the plane P, and n is the unit normal vectors of P that 

points toward the region whose volume we seek. 

(ii)  

(ii) If ( sin cos , sin sin , cos ) 0G t s t s t   =  is solvable for  , ( , )s t =  is a real function 

and represent one piece of S, then the volume of R is given by 

                        ( )
2 ( , )

22

0 0 0
( sin ) .

s t

r t dr dtds


 

                           (3) 

We call above method as the integral method, and we make the steps of the detailed 

calculations into the following Maple procedure. 
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The Maple procedure 

 

>parvol:=proc(fun, PL, neworigin) 

local a1, b1, c1, d1, p1, p2, p3, n1, n2, n3, dotp, mat, svol, svol2, fvec, xnew, equ, equ1, rou, fun1, 

fun2, para, valst, vals, norigin; 

# please use “x, y, z” (or other variables but in alphabet) as parameters in fun; 

# PL=[a, b, c, d] be the coefficients of the plane “ax+by+cz=d”; 

# neworigin is the origin of a new coordinate system, the given value is neworigin=[0, 0, d/c]; 

a1:=PL[1]; b1:=PL[2]; c1:=PL[3]; d1:=PL[4];  

if nargs<3 then 

    norigin:=[0, 0, d1/c1];  

else 

    norigin:=neworigin; 

end if; 

para:=MTM[findsym](fun); 

if c1=0 then  

error (“the case can not be dealt with”); 

end if; 

if d1<>0 and a1<>0 and b1<>0 then 

p1:= [0, 0, d1/c1]; p2:= [d1/a1, 0, 0]; p3:= [0, d1/b1, 0]; 

elif d1<>0 and a1=0 and b1<>0 then 

p1:= [0, 0, d1/c1]; p2:= [0, d1/b1, 0]; p3:= [1, 0, d1/c1]; 

elif d1<>0 and a1<>0 and b1=0 then 

p1:= [0, 0, d1/c1]; p2:= [d1/a1, 0, 0]; p3:= [0, 1, d1/c1]; 

elif d1<>0 and a1=0 and b1=0 then 

p1:= [0, 0, d1/c1]; p2:= [0, 1, d1/c1]; p3:= [1, 0, d1/c1]; 

elif d1=0 and a1<>0 and b1<>0 then 

p1:= [0, 0, 0]; p2:= [1, 0, -a1/c1]; p3:= [0, 1, -b1/c1]; 

elif d1=0 and a1=0 and b1<>0 then 

p1:= [0, 0, 0]; p2:= [1, 1, -b1/c1]; p3:= [2, 1, -b1/c1]; 

elif d1=0 and a1<>0 and b1=0 then 

p1:= [0, 0, 0]; p2:= [1, 1, -a1/c1]; p3:= [1, 2, -a1/c1]; 

elif d1=0 and a1=0 and b1=0 then 

p1:= [0, 0, 0]; p2:= [1, 0, 0]; p3:= [0, 1, 0]; 

end if; 

n1:=vector(p2-p1); n2:=vector(p3-p1); dotp:=linalg[dotprod](n1, n2); 

if dotp<>0 then 

n1:=evalm(n1-dotp*n2/(linalg[norm](n2, 2))^2) ; 

end if; 

n1:=evalm(n1/linalg[norm](n1, 2)); n2:=evalm(n2/linalg[norm](n2, 2)); 

n3:=linalg[crossprod](n1, n2); 

mat:=matrix(3, 3, [n1, n2, n3]); mat:=linalg[transpose](mat); 

fvec:=matrix( 3,1, [p, q, r]); 

xnew:=evalm((mat&*fvec)+matrix(3,1, norigin));  

equ:=MTM[subs](fun=0, [para[1], para[2], para[3]], [xnew[1, 1], xnew[2,1], xnew[3, 1]]); 
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equ1:=MTM[subs](equ, [p, q, r], [d*sin(t)*cos(s), d*sin(t)*sin(s), d*cos(t)]); 

rou:=solve(equ1, d); 

fun1:=simplify(rou[1]); fun2:=simplify(rou[2]); 

valst:=int(v^2*sin(t), v=0..fun1); 

vals:=evalf(student[simpson](valst(s, t), t=0..Pi/2, 200)): 

svol:=evalf(student[simpson](vals, s=0..2*Pi, 200)); 

print(“the volume of one piece bounded by the plane P and the surface S is”); 

print(svol); 

if (fun2<> null) then 

valst:=int(v^2*sin(t),v=0..fun2); vals:=evalf(student[simpson](valst, t=0..Pi/2, 200)): 

svol2:=evalf(student[simpson](vals, s=0..2*Pi, 200)); 

print(“the volume of the other piece bounded by the plane P and the surface S is”); 

print(svol2); 

end if; 

end:  

 

Note: As mentioned in Theorem 3.5 of [1] that we need to first make sure that  can be solved 

by Maple or our Maple procedure can be applied to obtain the result. In addition, it is not easy to get 

the exact integration value from (3). We sometimes need to apply higher dimension Simpson's rule 

or integration quadratures to obtain an approximation for the integrals in the procedure.  

 

In the following two examples 3.6 and 3.7 when S is an elliptic paraboloid or a hyperboloid of 

two sheets, we show how we transform the surface equation to a standard form before applying our 

Maple procedure. 

 

Example 3.6 Let S be the surface 2 2 22 2 3 4 2 2 4 6 2x y z xy xz yz x y z+ + + + + − + − 3 0+ = and the 

plane P be 2 2 3 20 0x y z− + − = . Find the volume of the region bounded by S and P. 

Solution: Set up the expression for S, draw the figure of S (S is an elliptic paraboloid, see Figure 6) 

and P. If we directly run the procedure “parvol”, we can't get the correct answer immediately.  

 

>with(plots): 

>fun:= 2*x^2+2*y^2+3*z^2+4*x*y+2*x*z+2*y*z-4*x+6*y-2*z+3: 

>fig1:=implicitplot3d({ fun}, x=-2..15, y=-15..2, z=-7..10, numpoints=2000, axes=boxed): 

>fig2:=plot3d({-(sqrt(2)*x-sqrt(2)*y-20)/sqrt(3)}, x=-2..15, y=-15..2, shading=zhue, transparency 

=0.3, numpoints=2000, axes=boxed): 

>display(fig1, fig2); 
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Let us convert the quadric S into a standard equation by the orthogonal transformation:

3 6 2 1

3 6 2 4

3 6 2 1

3 6 2 4

3 6 2 1

3 6 2 2

x x y z

y x y z

z x y z


  = + − −




  = + + −



  = − − +
 .  

 

Then the equations of S and P under the new coordinate system x y z  
 are 1 :S 2 25 2x y + +  

5 2z

9
0

4
+ =

, and 
1

3
:  2 2 20 0

2
P x y z  − − + − =

respectively. Hence the volume bounded by the 

surface S and the plane P equals the volume bounded by S1 and P1. We run the procedure “parvol” 

for equations of S1 and P1, we get the volume to be -335.8952501.  

 

>fun1:=5*x^2+2*y^2+5*sqrt(2)*z+9/4: 

>fig3:= implicitplot3d({fun1}, x=-5..5, y=-8..8, z=-16..1, numpoints =2000, axes=boxed); 

>fig4:=plot3d({(x-sqrt(2)*y+sqrt(3)/2-20)/2}, x=-5..5, y=-8..8, shading=zhue, transparency=0.3, 

numpoints=2000, axes=boxed): 

>display(fig3, fig4); 

 

            

Figure 6. The region bounded by S and P         Figure 7. The region bounded by S1 and P1 

 

>parvol(fun1, [1, -sqrt(2), -2, 20-sqrt(3)/2]); 

“the volume of one piece bounded by the plane P and the surface S is” 

                               1.170009574 1010  

     “the volume of the other piece bounded by the plane P and the surface S is” 

                                -335.8952501 
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Note: If we verify n3 (the meaning as n in Theorem 3.5) in the procedure “parvol”, we see that 

its direction is downward, thus the negative value is the volume we seek. 

We can find that the projection of intersection of S1 and P1 on the xy-plane is
2 2 5

5 2 2
2

x y x+ +  

19
5 5 2 0,  0

4
y z− + − = = . Thus, we may find the volume bounded by S1 and P1 the following 

integral. 

 

>V:=evalf(int(int(1/2*(x-sqrt(2)*y+sqrt(3)/2-20)+1/(5*sqrt(2))*(5*x^2+2*y^2+9/4), 

y=5/4-(1/4)*sqrt(-13-20*sqrt(2)*x+400*sqrt(2)-40*x^2)..5/4+(1/4)*sqrt(-13-20*sqrt(2)*x+400*sqrt

(2)-40*x^2)), x=-(1/4)*sqrt(2)-(1/5)*sqrt(-5+250*sqrt(2))..-(1/4)*sqrt(2)+(1/5) *sqrt(-5+250 

*sqrt(2)))); 

                              V:= -335.8691901 

 

For this Example 3.6, we point out our quadrature yields the same answer as the one by using 

traditional method if we know explicitly what the intersection is and it is easy to use dxdy or dydx 

integrations.  

In the following example, we consider the case where S is a hyperboloid of two sheets. 

Example 3.7 Let S be the surface 2 2 2 4 4 4 5 0x y z xy xz yz+ + + − − − = and P be 6 3 6x y z+ −  

21 0+ = . Find the volume of the region bounded by S and P. 

 

Solution: Set up the expression for S, draw the figure of S (S is a hyperboloid of two sheets, see 

Figure 8) and P. If we run the procedure “parvol” directly, we won’t get the correct answer 

immediately.  

 

>with(plots): 

>fun:= x^2+y^2+z^2+4*x*y-4*x*z-4*y*z-5: 

>fig5:=implicitplot3d({fun}, x=-30..20, y=-25..20, z=-20..30, numpoints =2000, axes=boxed): 

>fig6:=plot3d({(sqrt(6)*x+sqrt(3)*y+21)/sqrt(6)}, x=-30..20, y=-25..20, shading=zhue, 

transparency=0.3, numpoints=2000, axes=boxed): 

> display(fig5, fig6); 

 

Instead, we first convert the quadric S into a standard equation by the orthogonal transformation: 

3 2 6

3 2 6

3 6

3 6

3 2 6

3 2 6

x x y z

y x z

z x y z


  = + +




 = − −



  = − + −
 .  
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Then the equations of S and P in the new coordinate system x y z  
are 1 :S 2 2 25 5 0x y z  − − − = , and

1 :  (1+2 2) (2 2) 21 0P x z + − + =
respectively. Hence the volume bounded by the surface S and 

the plane P equals the volume bounded by S1 and P1. We run the procedure “parvol” for equations 
of S1 and P1, we obtain the volume to be -960.3695172.   
 

>fun1:=5*x^2-y^2- z^2-5: 

>fig7:= implicitplot3d({fun1}, x=-10..10, y=-15..15, z=-20..20, numpoints =2000, axes=boxed): 

>fig8:=implicitplot3d({(1+2*sqrt(2))*x+(2-sqrt(2))*z+21=0}, x=-15..15, y=-15..15, z=-20..20, 

shading=zhue, transparency=0.3, numpoints=2000, axes=boxed); 

>display(fig7, fig8); 

 

            

Figure 8. The region bounded by S and P   Figure 9. The region bounded by S1 and P1 

 

>parvol(fun1, [1+2*sqrt(2), 0, 2-sqrt(2), -21], [ -21/(1+2*sqrt(2)), 0, 0]);  

“the volume of one piece bounded by the plane P and the surface S is” 

                               -960.3695172  

     “the volume of the other piece bounded by the plane P and the surface S is” 

                              1.813683906 1010 

 

Note: If we examine the normal vector n3 in the procedure “parvol”, we see that the direction 

of n3 is pointed toward the right, thus the net signed volume of -960.3695172 is the volume we seek, 

and we discard the second Maple output. As we did in Example 3.6, we may calculate the volume of 

the region bounded by S1 and P1 by using traditional method and get V= 960.3693067. 

In view of Examples 3.6 and 3.7, we see that the equation of S needs to be converted into a 
standard form through an orthogonal transformation before using the procedure “parvol”. The 
Example 3.8 shows that this step is not necessary for certain ellipsoids. However, some special care 
needs to be addressed before the procedure “parvol” is used, see Example 3.9. 

 

Example 3.8 Let S be the surface 
2 2 214 27 98 4 34 8 28 20 74 169x y z yz xz xy x y z+ + + − − + + − − =0 
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and P be the plane 3 2 1.x y z+ − = Find the volumes of the regions bounded by the surface and the 
plane. 
Solution: Set up the expression for S, draw the figure of S (S is an ellipsoid, see Figure 10) and P. 

Then we run the procedure “parvol”, we get the volumes are 53.39430479 and -14.90627780 

respectively.  

 

>fun1:=14*x^2+27*y^2+98*z^2+4*y*z-34*x*z-8*x*y+28*x+20*y-74*z-169: 

>fig9:= implicitplot3d({fun1}, x=-5..5, y=-4..4, z=-3..3, numpoints=1000, axes=boxed): 

>fig10:=implicitplot3d({x+3*y-2*z-1=0}, x=-6..5, y=-4..4, z=-2..2, shading=zhue, transparency 

=0.3, numpoints=1000, axes=boxed): 

>display(fig9, fig10); 

>parvol(fun1, [1, 3, -2, 1]); 

          “the volume of one piece bounded by the plane P and the surface S is” 

 

                                  53.39430479 

 “the volume of the other piece bounded by the plane P and the surface S is” 

                                  -14.90627780 

 
Figure 10. Volume bounded by S and P 

 

Note: The total volume, by taking the absolute value, is about 68.30058259. The surface S of 

example 3.8 is an ellipsoid which has a volume of 
3

2
1 4

(195)
167 3

    68.30052710.   

In the next example, we show that we need to take special care before adopting the integration 

method mentioned in Theorem 3.5. Without loss of generality, we select the surface that is already in 

standard form. 

Example 3.9 Let S be the surface

2 2
2 ( 3)

1 0
9 16

y z
x

−
+ + − =

, and P be the plane3 2 1.x y z− − = −
 

Find the respective volumes bounded by the ellipsoid and the plane. 

 

Solution: Set up the expression for S, draw the figures of S and P (see Figure 11). Then run the 
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procedure “parvol”, we get the volumes are 15.71173760 and -34.57548356 respectively.  

 

>fun2:=x^2+y^2/9+(z-3)^2/16-1: 

>with(plots): 

>fig11:=implicitplot3d({fun2}, x=-2..2, y=-3..3, z=-2..8, numpoints =2000, axes=boxed): 

>fig12:=implicitplot3d({3*x-2*y-z+1=0}, x=-2..2, y=-3..3, z=-2..8, shading=zhue, transparency 

=0.3, numpoints=2000, axes=boxed): 

>display(fig11, fig12); 

>parvol(fun2, [3, -2, -1,-1]); 

             “the volume of one piece bounded by the plane P and the surface S is” 

                                    15.71173760 

            “the volume of the other piece bounded by the plane P and the surface S is” 

                                    -34.57548356 

 

 

 
Figure 11. Volume bounded by S and P 

 

However, if we use the plane P1:
5 3 12x y z− − = − , we get the following wrong results, and they 

are complex numbers. 

 

>parvol(fun2, [5, -3, -1,-12]); 

            “the volume of one piece bounded by the plane P and the surface S is” 

                              53.48787193-3.016654431 I 

            “the volume of the other piece bounded by the plane P and the surface S is” 

                             -1.169514883+0.03878192866 I 

 

In the procedure “parvol”, we note that we use [0, 0, d/c]=[0, 0, 12] as the origin; however, we 

find that the point (0, 0, 12) is not in the region bounded by S. To correct this problem, the new 

origin should be chosen as a point that is on the plane P1 and in the interior of the region bounded 

by S. For example, if we choose the point (-0.8, 5/3, 3) as the new origin, then we obtain the 



The Electronic Journal of Mathematics and Technology, Volume 6, Number 2, ISSN 1933-2823 
 

190 

 

following right answer, the verification will be shown in Example 3.12. 

 

 

>parvol(fun2, [5,-3,-1,-12], [-0.8, 5/3, 3]); 

“the volume of one piece bounded by the plane P and the surface S is” 

                                    49.04701500 

            “the volume of the other piece bounded by the plane P and the surface S is” 

                                    -1.211028031 

 

Similarly, if we take the plane 2P :3 1x y z− + = −  into consideration, then we again have following 

wrong results when the procedure “parvol” is used directly. 

 

>fig14:=implicitplot3d({3*x-y+z=-1}, x=-2..2, y=-3..4, z=-2..8, shading=zhue, transparency=0.3, 

numpoints=2000, axes=boxed): 

>display(fig11, fig14); 

>parvol(fun2, [3, -1, 1,-1]); 

            “the volume of one piece bounded by the plane P and the surface S is” 

                                        0 

            “the volume of the other piece bounded by the plane P and the surface S is” 

                                   -43.60938130 

 

         
Figure 12. Volume bounded by S and P2        

 

In this case, we note that the origin is [0, 0, d/c] = [0, 0, -1], and the point (0, 0, -1) is on the 

boundary of the region bounded by S. If we choose the point (0, 2, 1), which is on the plane P2 and 

inside S, as the new origin, then we get the right answer as shown below when we run the procedure 

“parvol”; we may verify the answer later in Example 3.12. 

 

>parvol(fun2, [3, -1, 1,-1], [0, 2, 1]); 

            “the volume of one piece bounded by the plane P and the surface S is” 

                                   3.328215450             
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“the volume of the other piece bounded by the plane P and the surface S is” 

                                   -46.93743190 

 

 

In view of Theorem 3.5, the difficulty of finding  may prevent us getting the right answer. In 

Example 3.9, we demonstrated that the trick is the new origin should be correctly chosen, inside the 

cross section of the intersection, before applying the integration method in theorem 3.5. 

Now, we introduce the following alternative transformation method. 

 

3.2. Transformation Method 

 
Suppose the surface S is a real closed quadric of the form: 

11 12 13

12 22 23 14 24 34 44

13 23 33

( , , ) 2 0,  ,  , ( ,  ,  ),  .   (4)T

x a a a

F x y z X AX BX C X y A a a a B a a a C a

z a a a

   
   

= + + = = = = =   
   
   

 

And the plane P: ax by cz d+ + = cuts the solid bounded by the surface S into only two pieces. In this 

section, we discuss how we can use linear transformations to find the volumes of these two 

respective pieces bounded by P and S. We briefly outline our strategy of finding the desired volume 

as follows. According to the classifications of quadrics, S can be transformed into an ellipsoid S′ of 

the form 
2 2 2

2 2 2
1

x y z

a b c
+ + =  by a proper orthogonal transformation (including moving and rotation) 

[4], and P is transformed into a new plane P1 correspondingly. Furthermore, we adopt a linear 

transformation: ',  = ,  x ax y by z cz = = so that S′ and the plane P1 are mapped into a unit sphere S 

and a new plane P2: 2 2 2 2a x b y c z d  + + =  respectively. Consequently, we note that finding the 

volume of one piece bounded by P and S is transformed into finding the volume bounded by a 

spherical segment by P2 and S  . It is known that the volume of a spherical segment is 2( 3)h R h − , 

where R is the radius of the sphere and h is the height of the segment. Suppose we let d be the 

distance from the origin to the plane P2, then h R d= − (or h R d= + ). By the linearity of the 

transformation, the ratio of the volumes of the parts of the sphere S″ and S should be the same. 

Finally, with the Jacobian determinant determined by the linear transformation, we will obtain the 

exact volumes of the two pieces bounded by P and S.  

The main computing steps are as follows: Firstly, we determine if the S is a real closed quadric 

(i.e. an ellipsoid) (see Step 1). Secondly, finding the principal diametral planes of S, we make the 

orthogonal transformation by using the three orthogonal principal diametral planes as new 

coordinate planes, then S is transformed into S  of the form 
2 2 2

2 2 2
1

x y z

a b c
+ + = (see Steps 2 through 6 

below). Next, we make use of a linear transformation such that those two respective pieces bounded 

by P and S are changed into spherical segments. Finally, the volumes of two respective pieces 

bounded by P and S are obtained (see Steps 7 through 8).  

   

Step 1. We compute the invariants (under orthogonal transformations) of ( , , ) 0F x y z = , 1 2 3, ,I I I  and

4I , to determine whether the S  is a real closed quadric (i.e. an ellipsoid) by checking the 
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conditions:
2 1 3 40,  0,  and 0I I I I   . Where 

1 11 22 33I a a a= + + ,
11 12

2

12 22

a a
I

a a
=  +

11 13 22 23

13 33 23 33

a a a a

a a a a
+ , 

11 12 13

3 12 22 23

13 23 33

a a a

I a a a

a a a

= , and

11 12 13 14

12 22 23 24

4

13 23 33 34

14 24 34 44

a a a a

a a a a
I

a a a a

a a a a

= . 

 

Step 2. We find the central point 0 0 0( , , )x y z of S which satisfies: 

 

                  

11 0 12 0 13 0 14

12 0 22 0 23 0 24

13 0 23 0 33 0 34

0

0

0

a x a y a z a

a x a y a z a

a x a y a z a

+ + + =


+ + + =
 + + + =

                             (5) 

 

Step 3. We establish the characteristic equation of S :
3 2

1 2 3 0I I I  − + − + = .      (6)  

And find the characteristic roots 1 2 3, ,   . 

 

Step 4. We substitute ( 1, 2,3)i i = into the system of equations,   

                  

11 12 13

12 22 23

13 23 33

( ) 0

( ) 0

( ) 0

i

i

i

a X a Y a Z

a X a Y a Z

a X a Y a Z







− + + =


+ − + =
 + + − =

,                             (7) 

 

and obtain the principal directions : : ( 1,2,3)i i iX Y Z i = of S. 

  

Step 5. We substitute , , ( 1,2,3)i i iX Y Z i = into the equation,
11 12 13 14( )iX a x a y a z a+ + + +

12 22(iY a x a y+  

23 24 13 23 33 34) ( ) 0ia z a Z a x a y a z a+ + + + + + = , and get the principal diametral planes of S. 

 

Step 6. We use three orthogonal principal diametral planes as new coordinate planes, and make an 

orthogonal transformation, so that S is transformed into S  of the form 
2 2 2

2 2 2
1

x y z

a b c
+ + = and P is 

transformed into a plane 1P . (If we get only two principal diametral planes, we can use the central 

point 0 0 0( , , )x y z to get the third one.) 

 

Step 7. Through a linear transformation: ',  = ,  x ax y by z cz = = , S  is transformed into an unit 

sphere S  , and the plane P1 is transformed into P2: 2 2 2 2a x b y c z d  + + = . We compute the Jacobian 

determinant J of the linear transformation. 



The Electronic Journal of Mathematics and Technology, Volume 6, Number 2, ISSN 1933-2823 
 

193 

 

 

Step 8. We compute the volumes of spherical segments determined by the formula 2( 3)h R h − , and 

get the volumes of pieces bounded by S and P with the formula 2( 3)h R h − | J |, where h is the 

height of the corresponding spherical segment. 

 

Theorem 3.10 Let S be a real closed quadric of the form (4), and the plane P: ax by cz d+ + = cut the 

solid bounded by S into only two pieces. Then the volumes of the two pieces can be computed by 

above steps 1 through 8.  

 

We call above method as the linear transformation method, the detailed process of calculations is 

given by the procedure (named as “quadvol” see [14]). Readers need input the parameters (fun and 

pla) of “quadvol” and the variables given by “x, y, z”. For example, one may write fun=x^2+y^2/4 

+z^2/9-1. We show in the following Example 3.11 how the procedure, “quadvol” is implemented. 

 

Example 3.11 Let S be the surface 
2 2 214 27 98 4 34 8 28 20 74 169x y z yz xz xy x y z+ + + − − + + − −  

=0 and P be the plane 3 2 1x y z+ − = (S and P are same as in example 3.8). Find the respective 

volumes bounded by S and P. 

 

Solution: Set up the expressions for S and P, then run the procedure “quadvol”, we have following 

results. 

 

>fun3:=14*x^2+27*y^2+98*z^2+4*y*z-34*x*z-8*x*y+28*x+20*y-74*z-169: 

>pla:=x+3*y-2*z-1: 

>quadvol(fun3, pla); 

“the volume of one piece bounded by the plane P and the surface S is 14.906196 or”  
4.744789434  

“the volume of the other piece bounded by the plane P and the surface S is 53.394332 or”  
16.99594358  
 

Example 3.12 Let S be the surface

2 2
2 ( 3)

1 0
9 16

y z
x

−
+ + − =

, and P be the plane3 2 1x y z− − = − (S 

and P are same as in example 3.9). Find the respective volumes bounded by S and the planes. 

 

Solution: Set up the expressions for S and P, then run the procedure “quadvol”, we get following 

results. 

 

>fun4:=x^2+y^2/9+(z-3)^2/16-1: 

>pla:=3*x-2*y-z+1: 

>quadvol(fun4, pla); 

“the volume of one piece bounded by the plane P and the surface S is 15.689999 or”  
4.994281769  

“the volume of the other piece bounded by the plane P and the surface S is 34.575484 or”  
11.00571824
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Comparing with the results in Example 3.9, we see that the answer obtained through the 

integral method is very close to that of method of the linear transformation. However, integral 

method produces a relative large error when some cases are considered; as we have seen in Example 

3.9 that if we use planes P1: 5x-3y-z +12 =0 or P2: 3x-y+z+1=0, we know that the cases were 

 

computed incorrectly by the integral method if the parameters in the procedure “parvol” were not 

chosen appropriately. We use the linear transformation method to calculate as follows. 

 

>pla1:=5*x-3*y-z+12: 

>quadvol(fun4, pla1); 

“the volume of one piece bounded by the plane P and the surface S is 1.212944 or”  

0.3860921778  
“the volume of the other piece bounded by the plane P and the surface S is 49.052538 or”  

15.61390782  
>pla2:=3*x-y+z+1: 

>quadvol(fun4, pla2); 

“the volume of one piece bounded by the plane P and the surface S is 3.328051 or”  
1.059351378  

        
 

“the volume of the other piece bounded by the plane P and the surface S is 46.937432 or”  

 
14.94064862    

                     

Remark: When you run the procedure “quadvol”, a dialogue box may occur to ask you input 

the values of X1,Y1, Z1, according to the free variable, such as, [X1=X1,Y1=Y1, Z1=0] or [X1=X1, 

Y1=Y1, Z1=Z1]. In the first case, X1,Y1 are free variables, we can take any non-zero vector 

[X1,Y1, 0] as the values of X1,Y1, for example, X1=1,Y1=0 or X1=1,Y1=2. In the second case, X1, 

Y1, Z1 are free variables, we can take any two non-zero orthogonal vectors [X1, Y1, Z1] and [X2, 

Y2, Z2] as principle directions.  

 

4. Summary 
 

In this paper, we programmed Maple procedures for finding the signed area bounded by a 

parametric curve with respect to a slanted line and the signed volume bounded by a smooth 

parametric surface with respect to a plane. The procedures are based on the results in [1]. We 

provided some examples to illustrate the process of computing. We should point out that the formula 

(1) or (2) can only be used to compute net signed areas or net signed volumes of regions, it may not 

be feasible to determine the real areas or volumes of regions due to the interactions of the curves 

and the lines or the interactions of the surfaces and the planes; but it is feasible to do so for many 

problems of interest. In section 3, two methods (integral and linear transformation) of finding the 

volume of the solid bounded by an orientable smooth surface and a plane are discussed, for the 

linear transformation method, a procedure is presented that computes the volumes of an ellipsoid 

crossed by a plane in all cases. Some examples are given to explain when the two different methods 

will get the same answers, and to show the advantages and disadvantages of the two methods. 
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